The series \(\mathop \sum \limits_{n = 0}^\infty \frac{1}{{n!}}\)

The series \(\mathop \sum \limits_{n = 0}^\infty \frac{1}{{n!}}\)
| The series \(\mathop \sum \limits_{n = 0}^\infty \frac{1}{{n!}}\) Converges to

A. 2 In 2

B. √2

C. 2

D. e

Please scroll down to see the correct answer and solution guide.

Right Answer is: D

SOLUTION

Given:

Expanding the given expression, we can write:

\(\mathop \sum \limits_{n = 0}^\infty \frac{1}{{\angle n}} = 1 + \frac{1}{{\angle 1}} + \frac{1}{{\angle 2}} + \frac{1}{{\angle 3}} + \frac{1}{{\angle 4}} + \ldots \)

\(\mathop \sum \limits_{n = 0}^\infty \frac{1}{{\angle n}} = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{{24}} + \ldots \)    --- (1)

The series expansion of exponential function is given by:

\({e^x} = 1 + x + \frac{{{x^2}}}{{\angle 2}} + \frac{{{x^3}}}{{\angle 3}} + \frac{{{x^4}}}{{\angle 4}} + \ldots \)

\({e^x} = 1 + x + \frac{{{x^2}}}{2} + \frac{{{x^3}}}{6} + \frac{{{x^4}}}{{24}} + \ldots \)

Putting x = 1

\({e^1} = e = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{{24}} + \ldots \)    ---(2)

From (1) and (2), we get:

\(e = \mathop \sum \limits_{n = 0}^\infty \frac{1}{{\angle n}}\)

Or

\(\mathop \sum \limits_{n = 0}^\infty \frac{1}{{\angle n}} = e\)

Hence option 4 is correct.